
Sections 8.1, 10.1 and 10.2:

  

Inner Product Spaces 

& 

The Gram-Schmidt 

Orthonormalization Process



Ideas in this section… 

1) The Dot Product and Norm in  ℝ𝑛  and it’s properties

2) The Gram-Schmidt Orthonormalization Process in  ℝ𝑛 

3) Inner-Product Spaces and Norms

4) The Gram-Schmidt Orthonormalization Process in Inner-Product 

Spaces



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Def:  If  Ԧ𝑣 = (𝑎1, 𝑎2, … , 𝑎𝑛)  and  𝑤 = (𝑏1, 𝑏2, … , 𝑏𝑛)  are 2 vectors in  ℝ𝑛, 
then their dot product is the real number defined by…

Ԧ𝑣 ∙ 𝑤 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛

“Defining” Properties of the Dot Product:  ∀ 𝑢, Ԧ𝑣, 𝑤 ∈ ℝ𝑛  and  𝑘 ∈ ℝ ,…  

P1:  𝒗 ∙ 𝒘 ∈ ℝ 

P2: 𝒗 ∙ 𝒘 = 𝒘 ∙ 𝒗 

P3: 𝒖 ∙ 𝒗 + 𝒘 = 𝒖 ∙ 𝒗 + 𝒖 ∙ 𝒘

P4:  𝒌𝒗 ∙ 𝒘 = 𝒌 𝒗 ∙ 𝒘

P5:  𝒗 ∙ 𝒗 ≥ 𝟎  and  𝒗 ∙ 𝒗 = 𝟎  iff  𝒗 = 𝟎 



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Prove property  P1  for vectors in ℝ :

P1:  𝒗 ∙ 𝒘 ∈ ℝ 



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Prove property  P2  for vectors in ℝ :

P2: 𝒗 ∙ 𝒘 = 𝒘 ∙ 𝒗 



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Prove property  P3  for vectors in ℝ :

P3: 𝒖 ∙ 𝒗 + 𝒘 = 𝒖 ∙ 𝒗 + 𝒖 ∙ 𝒘



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Prove property  P4  for vectors in ℝ :

P4:  𝒌𝒗 ∙ 𝒘 = 𝒌 𝒗 ∙ 𝒘



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Prove property  P5  for vectors in ℝ :

P5:  𝒗 ∙ 𝒗 ≥ 𝟎  and  𝒗 ∙ 𝒗 = 𝟎  iff  𝒗 = 𝟎 



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Other things to know about the dot product:  

1) If  Ԧ𝑣  is a vector in  ℝ2  or  ℝ3, it can be shown that its length is  Ԧ𝑣 ∙ Ԧ𝑣 .

So, for any vector  Ԧ𝑣 ∈ ℝ𝑛, we define its norm (or length or magnitude or 

absolute value or modulus) to be

Ԧ𝑣 = Ԧ𝑣 ∙ Ԧ𝑣

and so  Ԧ𝑣 ∙ Ԧ𝑣 = Ԧ𝑣 2.

Note:  We say that a vector  Ԧ𝑣 ∈ ℝ𝑛  is a unit vector if its length is 1. In this 

case…   

Ԧ𝑣 = 1   or   Ԧ𝑣 ∙ Ԧ𝑣 =1 



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Other things to know about the dot product:  

2) If  Ԧ𝑣  and  𝑤  are nonzero vectors in  ℝ2  or  ℝ3  and  𝜃  is the angle between 

the vectors, it can be shown that

Ԧ𝑣 ∙ 𝑤 = Ԧ𝑣 𝑤 cos 𝜃     or     𝜃 = cos−1 𝑣∙𝑤

𝑣 𝑤

So, for any nonzero pair of vectors  Ԧ𝑣, 𝑤 ∈ ℝ𝑛, we define the angle between the 

vectors  𝜃 as

𝜃 = cos−1
Ԧ𝑣 ∙ 𝑤

Ԧ𝑣 𝑤

Note:  We say nonzero vectors  Ԧ𝑣, 𝑤 ∈ ℝ𝑛  are orthogonal (or perpendicular) if 

the angle between them is  90°.  In this case…

Ԧ𝑣 ∙ 𝑤 = 0



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Other things to know about the dot product:  

3) If  Ԧ𝑣  is a nonzero vector but isn’t a unit vector,  by normalizing a vector, we 

mean to find a vector in the same direction as  Ԧ𝑣  but with length 1.

The normalized version of  Ԧ𝑣  is   
1

𝑣
Ԧ𝑣 



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Ex 1:  Let  𝑢 = (3,1, −2,7)  ,  Ԧ𝑣 = (−4,2,0,3)  ,  and  𝑤 = (2,1,9,2) 

a) Find  𝑢 ∙ Ԧ𝑣

b)   Find Ԧ𝑣

c)   Find the angle between  𝑢  and  Ԧ𝑣



The Dot Product and Norm in  ℝ𝑛  and it’s Properties

Ex 1:  Let  𝑢 = (3,1, −2,7)  ,  Ԧ𝑣 = (−4,2,0,3)  ,  and  𝑤 = (2,1,9,2) 

d) Are vectors  Ԧ𝑣  and  𝑤  orthogonal?

 

e)   Normalize vector  Ԧ𝑣



The Gram-Schmidt Orthonormalization Process in  ℝ𝑛

Def:  Let  𝑈  be a subspace of ℝ𝑛  and let  { 𝑤1, 𝑤2,…, 𝑤𝑘} be a basis for  U. 

Then  { 𝑤1, 𝑤2,…, 𝑤𝑘}  is an orthonormal basis for  U  if…

1) 𝑤𝑖  is orthogonal to 𝑤𝑗  for all  𝑖 ≠ 𝑗

     (that is, 𝑤𝑖  ∙ 𝑤𝑗= 0  for all  𝑖 ≠ 𝑗)

2)  Each 𝑤𝑖  has norm 1

      (that is, 𝑤𝑖  ∙ 𝑤𝑖= 1  for all  𝑖)
  

Let  { 𝑢1, 𝑢2,…, 𝑢𝑘}  be linearly independent vectors in  ℝ𝑛  and let  

𝑈 = span{ 𝑢1, 𝑢2,…, 𝑢𝑘}.  ( So  { 𝑢1, 𝑢2,…, 𝑢𝑘}  is a basis for  U )

The goal is to construct an orthonormal basis  { 𝑤1, 𝑤2,…, 𝑤𝑘} for  U  using  

vectors  { 𝑢1, 𝑢2,…, 𝑢𝑘}



The Gram-Schmidt Orthonormalization Process in  ℝ𝑛

Given linearly independent vectors  { 𝑢1, 𝑢2,…, 𝑢𝑘} 

Step 1:  Come up with a set of orthogonal vectors  { Ԧ𝑣1, Ԧ𝑣2,…, Ԧ𝑣𝑘} by 

calculating… 

Ԧ𝑣1= 𝑢1

Ԧ𝑣2= 𝑢2 − 𝑝𝑟𝑜𝑗𝑣1
𝑢2 = 𝑢2 −

𝑢2 ∙ Ԧ𝑣1

Ԧ𝑣1
2

Ԧ𝑣1

Ԧ𝑣3= 𝑢3 − 𝑝𝑟𝑜𝑗𝑣1
𝑢3 − 𝑝𝑟𝑜𝑗𝑣2

𝑢3 = 𝑢3 −
𝑢3∙𝑣1

𝑣1
2 Ԧ𝑣1 −

𝑢3∙𝑣2

𝑣2
2 Ԧ𝑣2

Ԧ𝑣𝑘= 𝑢3 − 𝑝𝑟𝑜𝑗𝑣1
𝑢3 − 𝑝𝑟𝑜𝑗𝑣2

𝑢3 … − 𝑝𝑟𝑜𝑗𝑣𝑘−1
𝑢3

= 𝑢3 −
𝑢3∙𝑣1

𝑣1
2 Ԧ𝑣1 −

𝑢3∙𝑣2

𝑣2
2 Ԧ𝑣2 … −

𝑢3∙𝑣𝑘−1

𝑣𝑘−1
2 Ԧ𝑣𝑘−1

.

.

.



The Gram-Schmidt Orthonormalization Process in  ℝ𝑛

Given linearly independent vectors  { 𝑢1, 𝑢2,…, 𝑢𝑘} 

Step 2:  Divide each Ԧ𝑣𝑖  by its length to normalize it. That is, 𝑤𝑖=
1

𝑣𝑖
Ԧ𝑣𝑖.

Then  { 𝑤1, 𝑤2,…, 𝑤𝑘}  will be the desired orthonormal basis for 

𝑈 = 𝑠𝑝𝑎𝑛{ 𝑢1, 𝑢2,…, 𝑢𝑘}

Talk about why this step doesn’t change the orthogonality created in step 1



The Gram-Schmidt Orthonormalization Process in  ℝ𝑛

Ex 2:  Use the Gram-Schmidt Orthonormalization procedure to find an 

orthonormal basis for  ℝ2  starting with the independent set of vectors  

{ 2, −1  , 7,4  } 



The Gram-Schmidt Orthonormalization Process in  ℝ𝑛

Ex 3:  Use the Gram-Schmidt Orthonormalization procedure to find an 

orthonormal basis for  𝑈 = 𝑠𝑝𝑎𝑛{ 𝑢1, 𝑢2, 𝑢3 }  where 𝑢1 = 1,1, −1, −1 , 
𝑢2 = (3,2,0,1),  and  𝑢3 = 1,0,1,0 .



Inner-Product Spaces and Norms

Def:  Let  V  be a vector space. An inner-product is a function that takes any 

pair of vectors in  V  and returns a scalar (real number) that satisfies the 

properties below. If  Ԧ𝑣  and  𝑤  are vectors in  V,  their inner-product is denoted 

by  < Ԧ𝑣, 𝑤 >. 

Defining Properties of an Inner-Product:  ∀ 𝑢, Ԧ𝑣, 𝑤 ∈ 𝑉  and  𝑘 ∈ ℝ ,…  

P1:  < 𝒗, 𝒘 > ∈ ℝ 

P2: < 𝒗, 𝒘 > = < 𝒘, 𝒗 >

P3:  < 𝒖, 𝒗 + 𝒘 > = < 𝒖, 𝒗 > + < 𝒖, 𝒘 >

P4:  < 𝒗, 𝒌𝒘 > = 𝒌 < 𝒗, 𝒘 >

P5: < 𝒗, 𝒗 > ≥ 𝟎  and  < 𝒗, 𝒗 > = 𝟎  iff  𝒗 = 𝟎 

A vector space  V  with an inner-product defined on it is called an inner-product 

space.



Inner-Product Spaces and Norms

Def:  Let  V  be an inner-product space with inner-product  <∙,∙>. 

1) The norm of a vector  Ԧ𝑣 ∈ 𝑉  is defined as   

Ԧ𝑣 = < Ԧ𝑣, Ԧ𝑣 >

2) If  Ԧ𝑣  and  𝑤  are nonzero vectors in  V, the angle between the vectors is 

defined as

𝜃 = cos−1
< Ԧ𝑣, 𝑤 >

Ԧ𝑣 𝑤

3) Nonzero vectors  Ԧ𝑣  and  𝑤  are orthogonal if  

< Ԧ𝑣, 𝑤 > = 0

4) Vector Ԧ𝑣  is a unit vector if   

Ԧ𝑣 =1       or       < Ԧ𝑣, Ԧ𝑣 > = 1



Inner-Product Spaces and Norms

Ex 4a:  Verify that                                           is an inner-product on  𝐶[0,1].

P1:  < 𝒗, 𝒘 > ∈ ℝ 

< 𝑓, 𝑔 > =  න

0

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Inner-Product Spaces and Norms

Ex 4a:  Verify that                                           is an inner-product on  𝐶[0,1].

P2: < 𝒗, 𝒘 > = < 𝒘, 𝒗 >

< 𝑓, 𝑔 > =  න

0

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Inner-Product Spaces and Norms

Ex 4a:  Verify that                                           is an inner-product on  𝐶[0,1].

P3:  < 𝒖, 𝒗 + 𝒘 > = < 𝒖, 𝒗 > + < 𝒖, 𝒘 >

< 𝑓, 𝑔 > =  න

0

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Inner-Product Spaces and Norms

Ex 4a:  Verify that                                           is an inner-product on  𝐶[0,1].

P4:  < 𝒗, 𝒌𝒘 > = 𝒌 < 𝒗, 𝒘 >

< 𝑓, 𝑔 > =  න

0

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Inner-Product Spaces and Norms

Ex 4a:  Verify that                                           is an inner-product on  𝐶[0,1].

P5: < 𝒗, 𝒗 > ≥ 𝟎  and  < 𝒗, 𝒗 > = 𝟎  iff  𝒗 = 𝟎 

< 𝑓, 𝑔 > =  න

0

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Inner-Product Spaces and Norms

Ex 4b:  Using                                              as the inner-product on  𝐶 0,1 ,

find 2 nonzero vectors that are orthogonal.

< 𝑓, 𝑔 > =  න

0

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Inner-Product Spaces and Norms

Ex 4c:  Using                                              as the inner-product on  𝐶 0,1 ,

find a unit vector.

< 𝑓, 𝑔 > =  න

0

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Inner-Product Spaces and Norms

Ex 4d:  Using                                              as the inner-product on  𝐶 0,1 ,

find the angle between  𝑓 𝑥 = 𝑥  and  𝑔 𝑥 = 𝑒𝑥.

< 𝑓, 𝑔 > =  න

0

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



Inner-Product Spaces and Norms

Ex 5:  Show that                                           is NOT an inner-product on  𝐶[0,1].< 𝑓, 𝑔 > =  න

0

1/2

𝑓 𝑥 𝑔 𝑥 𝑑𝑥

P1:  < 𝒗, 𝒘 > ∈ ℝ 

P2: < 𝒗, 𝒘 > = < 𝒘, 𝒗 >

P3:  < 𝒖, 𝒗 + 𝒘 > = < 𝒖, 𝒗 > + < 𝒖, 𝒘 >

P4:  < 𝒗, 𝒌𝒘 > = 𝒌 < 𝒗, 𝒘 >

P5: < 𝒗, 𝒗 > ≥ 𝟎  and  < 𝒗, 𝒗 > = 𝟎  iff  𝒗 = 𝟎 



Def:  Let  𝑈  be a subspace of 𝑉  and let  { 𝑤1, 𝑤2,…, 𝑤𝑘} be a basis for  U. 

Then  { 𝑤1, 𝑤2,…, 𝑤𝑘}  is an orthonormal basis for  U  if…

1) 𝑤𝑖  is orthogonal to 𝑤𝑗  for all  𝑖 ≠ 𝑗

     (that is, < 𝑤𝑖  , 𝑤𝑗  > = 0  for all  𝑖 ≠ 𝑗)

2)  Each 𝑤𝑖  has norm 1

      (that is, < 𝑤𝑖  , 𝑤𝑖> = 1  for all  𝑖)
  

Let  { 𝑢1, 𝑢2,…, 𝑢𝑘}  be linearly independent vectors in  𝑉  and let  

𝑈 = span{ 𝑢1, 𝑢2,…, 𝑢𝑘}.  ( So  { 𝑢1, 𝑢2,…, 𝑢𝑘}  is a basis for  U )

The goal is to construct an orthonormal basis  { 𝑤1, 𝑤2,…, 𝑤𝑘} for  U  using  

vectors  { 𝑢1, 𝑢2,…, 𝑢𝑘}

The Gram-Schmidt Orthonormalization Process in 

Inner-Product Space 𝑉



Given linearly independent vectors  { 𝑢1, 𝑢2,…, 𝑢𝑘} 

Step 1:  Come up with a set of orthogonal vectors  { Ԧ𝑣1, Ԧ𝑣2,…, Ԧ𝑣𝑘} by 

calculating… 

Ԧ𝑣1= 𝑢1

Ԧ𝑣2= 𝑢2 − 𝑝𝑟𝑜𝑗𝑣1
𝑢2 = 𝑢2 −

< 𝑢2, Ԧ𝑣1 >

Ԧ𝑣1
2 Ԧ𝑣1

Ԧ𝑣3= 𝑢3 − 𝑝𝑟𝑜𝑗𝑣1
𝑢3 − 𝑝𝑟𝑜𝑗𝑣2

𝑢3 = 𝑢3 −
<𝑢3,𝑣1>

𝑣1
2 Ԧ𝑣1 −

<𝑢3,𝑣2>

𝑣2
2 Ԧ𝑣2

The Gram-Schmidt Orthonormalization Process in 

Inner-Product Space 𝑉

Ԧ𝑣𝑘= 𝑢3 − 𝑝𝑟𝑜𝑗𝑣1
𝑢3 − 𝑝𝑟𝑜𝑗𝑣2

𝑢3 … − 𝑝𝑟𝑜𝑗𝑣𝑘−1
𝑢3

= 𝑢3 −
<𝑢3,𝑣1>

𝑣1
2 Ԧ𝑣1 −

<𝑢3,𝑣2>

𝑣2
2 Ԧ𝑣2 … −

<𝑢3,𝑣𝑘−1>

𝑣𝑘−1
2 Ԧ𝑣𝑘−1

.

.

.



Given linearly independent vectors  { 𝑢1, 𝑢2,…, 𝑢𝑘} 

Step 2:  Divide each Ԧ𝑣𝑖  by its length to normalize it. That is, 𝑤𝑖=
1

𝑣𝑖
Ԧ𝑣𝑖.

Then  { 𝑤1, 𝑤2,…, 𝑤𝑘}  will be the desired orthonormal basis for 

𝑈 = 𝑠𝑝𝑎𝑛{ 𝑢1, 𝑢2,…, 𝑢𝑘}

The Gram-Schmidt Orthonormalization Process in 

Inner-Product Space 𝑉



The Gram-Schmidt Orthonormalization Process in 

Inner-Product Space 𝑉
Ex 6:  Use the Gram-Schmidt Orthonormalization procedure to find an 

orthonormal basis for  𝑈 = 𝑠𝑝𝑎𝑛{𝑥, 𝑒𝑥}  as a subspace of  𝐶[0,1]  with 

inner-product  < 𝑓, 𝑔 > =  න

0

1

𝑓 𝑥 𝑔 𝑥 𝑑𝑥



What you need to know from the book

Book reading

Section 8.1:  pages 407 – top half of 410

Section 10.1:  pages 527 – 534 

Section 10.2:  pages 536-539

Problems you need to know how to do from the book

Section 8.1:  page 414 #’s 1, 4

Section 10.1:  page 534 #’s 1-3, 5-9, 15-16, 22-23, 26-28, 31

Section 10.2:  page 543 #’s 1-5, 10-11, 15-18 
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